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We study the threshold control protocol for a collective flashing ratchet. In particular, we analyze the
dependence of the current on the values of the thresholds. We have found analytical expressions for the small
threshold dependence both for the few and for the many particle cases. For few particles the current is a
decreasing function of the thresholds, thus, the maximum current is reached for zero thresholds. In contrast, for
many particles the optimal thresholds have a nonzero finite value. We have numerically checked the relation
that allows to obtain the optimal thresholds for an infinite number of particles from the optimal period of the
periodic protocol. These optimal thresholds for an infinite number of particles give good results for many
particles. In addition, they also give good results for few particles due to the smooth dependence of the current
up to these threshold values.
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I. INTRODUCTION

Ratchets or Brownian motors are rectifiers of thermal
fluctuations. This rectification is usually achieved through
the introduction of an external deterministic or stochastic
perturbation in a system that is or becomes asymmetric under
spatial inversion �1�. Over the last years ratchets have been
studied due to their theoretical and experimental relevance.
From a practical point of view the ratchet effect has many
potential applications in biology, condensed matter and nano-
technology �1,2�.

Ratchets can be viewed as controllers that act on stochas-
tic systems with the aim of inducing directed motion through
the rectification of the fluctuations. In particular, flashing
ratchets are thermal fluctuation rectifiers based on switching
on and off a periodic potential �3,4�. Several studies deal
with the problem of optimizing the particle current �5� or the
efficiency �6� in these systems. However, they all consider
only open-loop controllers �as that obtained with a periodic
or random switching�. Recently, feedback control protocols
have been introduced in the context of collective ratchets
�7,8�. In the feedback control protocols the action of the con-
troller depends on the state of the system. This feedback
control, or closed-loop control, can be implemented in sys-
tems where the state of the system is monitored �as occurs in
some experimental setups with colloidal particles �9��.

In this paper we study one of these closed-loop controls,
the threshold control, previously introduced in Ref. �8�. The
structure of the paper is as follows. In the next section we
present the mathematical model of the collective flashing

ratchet with the threshold control protocol and we discuss
briefly other protocols that have been studied in recent pa-
pers. Later, in Sec. III, we analyze the dependence of the
average center-of-mass velocity on the thresholds, obtaining
analytical approximated expressions that are compared with
the numerical results. In Sec. III A we study the small thresh-
olds dependence �distinguishing the many particles case and
the few particles case�, while in Sec. III B we discuss the
dependence of the average center-of-mass velocity for any
thresholds and any number of particles. Finally, we present
our conclusions in Sec. IV.

II. THE MODEL

We consider N Brownian particles with positions xi�t� at
temperature T within a ratchet potential V�x�, and whose
dynamics is described by the overdamped Langevin equa-
tions

�ẋi�t� = ��t�F�xi�t�� + �i�t�, i = 1, . . . ,N , �1�

with � the friction coefficient �related to the diffusion coef-
ficient D through Einstein’s relation D=kBT /�� and �i�t�
Gaussian white noises of zero mean satisfying the
fluctuation-dissipation relation ��i�t�� j�t���=2�kBT�ij��t− t��.
The force is given by F�x�=−V��x� and � is a control param-
eter that can take only two possible values, �=0 �potential
off� or �=1 �potential on�.

Several control strategies have been studied in order to
maximize the particle current in this system. The optimal
periodic switching �7,8� consists on switching the potential
on during a time period Ton and switching it off during Toff.
Note that it is an open-loop control protocol and therefore
the results are independent of N. This protocol is the periodic
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flashing ratchet, that has been widely studied both theoreti-
cally and experimentally �1,2�. The maximization of the
center-of-mass instant velocity protocol has been introduced
and studied in Ref. �7�. It consist of switching the potential
on only if the net force would be positive. Therefore, it is a
closed-loop control protocol, because it needs information
about the state of the system in order to operate. This is the
best strategy for a single particle. However, for a large num-
ber of particles the system gets trapped with the potential on
or off and then the average steady state current tends to zero
as N increases �7�. Another closed-loop control protocol, the
threshold control, was proposed in Ref. �8� to avoid this
effect. In this paper we analyze it further.

The net force per particle is

f�t� =
1

N
�
i=1

N

F�xi�t�� . �2�

On the other hand, given the state of the system xi�t�, a good
estimator for the time derivative of f�t� can be obtained using
Langevin equation �1� and Ito calculus �see Ref. �8��,

ḟexp �
1

�N
�

i

��t�F�xi�t��F��xi�t�� +
kBT

�N
�

i

F��xi�t�� .

�3�

The maximization of center-of-mass instant velocity pro-
tocol has ��t�=��f�t��, with � the Heaviside function
���x�=1 if x�0, else ��x�=0�. In contrast, the threshold
control policy has two thresholds uon�0 and uoff	0 which
induce earlier switchings that permit to avoid the trapping.
When f�t� decreases below uon we switch off the potential,
although the net force is still positive, in order to avoid the
trapping. Analogously the potential is switched on if the net
force per particle increases above uoff, so we induce the flip-
ping of the system before f�t� is positive. Therefore, the
threshold control is given by

��t� = 	
1 if f�t� � uon,

1 if uoff 
 f�t� 
 uon and ḟexp�t� � 0,

0 if uoff 
 f�t� 
 uon and ḟexp�t� 
 0,

0 if f�t� 	 uoff.

 �4�

This scheme removes the long decaying tails in the evolution
of the net force preventing the trapping. Note that this pro-
tocol and the maximization of the center-of-mass instant ve-
locity protocol are feedback controls or closed-loop controls.
The threshold control protocol in the zero thresholds limit
gives the maximization of the center-of-mass instant velocity
protocol.

III. THRESHOLD CONTROL STRATEGY

A. Small thresholds

In this section we analyze the threshold control strategy
improving and extending the analytic expressions found for
the maximization of the center-of-mass instant velocity pro-
tocol �7�.

1. Many particles: quasideterministic approximation

For many particles �large N� the net force has a quaside-
terministic behavior. It can be described in terms of two con-
tributions, a deterministic contribution f� �given by the be-
havior for an infinite number of particles� plus a small
stochastic contribution

f�t� = f��t� + fluctuations. �5�

This approximate description has proven to be fruitful in
order to understand the behavior of these ratchets in the
many particle case �7�.

The deterministic contribution, that reflects the behavior
of the system for an infinite number of particles �N→��, can
be described through a particle distribution ��x , t� that
evolves according to the mean-field Fokker-Planck equation
��t��x , t�= �−��t��xF�x�+kBT�x

2���x , t�. The net force per
particle is a deterministic function f��t�= �F�x���

��0
Ldx��x , t�F�x�, with L the period of the ratchet potential.

The net force is zero for the equilibrium distribution when
the potential is on and also when it is off. We denote by f


��t�
with 
=on,off the value of the deterministic part of the net
force when the system has been evolving with the potential
on or off, respectively, a time t after a switching. After a
certain time �
 it can be approximately described by �7�

f

��t� = C
e−�
�t−�
�. �6�

C
 and �
 are constants that are obtained by fitting the net
force obtained with the Fokker-Planck equation. In order to
obtain fon

� �t� we evolve the equilibrium distribution for the
off potential with the Fokker-Planck equation with the poten-
tial on, i.e., we assume that the system was close to the
equilibrium state for the off potential before the off-on
switching. We proceed analogously for foff

� �t�.
On the other hand, the amplitude of the fluctuations of the

net force f can be estimated as �7�

� = ��f2�t�� − �f�t��2 
��F2�� − �F��
2

N
�

V0

L�a�1 − a�N
.

�7�

This simple result is a good estimation of the amplitude of
the fluctuations for potentials with characteristic height V0
and asymmetry a. For example, the potential

V�x� =
2V0

3�3
�sin�2�x

L
� +

1

2
sin�4�x

L
�� , �8�

that we have used for the figures of this paper, has charac-
teristic height V0 and characteristic asymmetry a=1/3
�where aL is defined as the minimum distance between a
minimum and a maximum of the potential, with L being the
period of the potential�.

We have already provided estimations for both the deter-
ministic part of the net force per particle and the amplitude
of its fluctuations. This will allow us to calculate the average
current.

First, we compute the characteristic times during which
the potential remains on, ton, and off, toff. In the threshold
control protocol the switching happens when the force
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crosses the threshold value with the appropriate slope �see
Eq. �4��. When the threshold is crossed the equality u


= f
�t
� is satisfied, with f
�t� the value of the net force a time
t after a switching. Therefore, using the quasideterministic
approximation �5� we obtain for the characteristic times

�f

��t
�� − � = �u
� . �9�

Using Eq. �6� we get the following explicit equations for the
characteristic times:

t
 = �
 +
1

�


ln
�C
�

�u
� + �
, �10�

with � given by Eq. �7�. Moreover, Eq. �6� implies that this
approximation is valid for t
��
, where �
 are the transient
times for each dynamics �afterwards, Eq. �6� is a good ap-
proximation�. This implies �u
�+�� �C
�, that can be ex-
pressed as �u
�+��maxt�f


��t�� by using �C
��maxt�f

��t��.

As ��1/�N, we see that this approximation is valid for
small thresholds and large number of particles.

We now compute the average displacement of the center-
of-mass during an on-off period. Note that the center-of-mass
moves only when the potential is on, because when it is off
the dynamics is purely diffusive. Therefore, as the center-of-
mass position is xc.m.=�ixi /N, its average displacement dur-
ing an on-off cycle in the many particle case is given by
using the evolution equations �1� as

�xc.m.�ton� =
1

�
�

0

ton

fon
� �t�dt . �11�

The integration of the late time expression �6� with 
=on
suggests a functional form

�xc.m.�ton� = �xon�1 − e−ton/�ton� . �12�

This functional form fits well the function �xc.m.�ton� ob-
tained from the numerical integration of the Fokker-Planck
equation, and this fit is used to determine �xon and �ton. We
have seen that the inclusion of the characteristic time �ton
improves the analytical results obtained in Ref. �7� �there it
was assumed �xc.m.�ton�=�xon�. This better estimation of the
average displacement improves the results for the intermedi-
ate regime of not-so-large number of particles. Furthermore,
the whole expression �12� is also necessary to improve the
results for nonzero thresholds. When thresholds are enlarged
the frequency of switching increases and therefore the times
ton decrease. This implies a shorter displacement, as Eq. �12�
predicts.

The previous results allow us to give an approximate ex-
pression for the average center-of-mass velocity in the sta-
tionary regime,

�ẋc.m.�st � lim
t→�

xc.m.�t� − xc.m.�0�
t

=
�xon

ton + toff
�1 − e−ton/�ton�

=
�xon�1 − A�uon + ��1/��on�ton��

B −
1

�on
ln�uon + �� −

1

�off
ln��uoff� + ��

, �13�

with � given by Eq. �7�, and A and B given by

A = e−�on/�tonCon
−1/��on�ton�,

B = �on + �off +
1

�on
ln Con +

1

�off
ln�Coff� .

The final expression in Eq. �13� shows the explicit depen-
dence on the thresholds uon, uoff, and on the amplitude of the
force fluctuations �; all the other parameters are determined
by the dynamics for an infinite number of particles with zero
thresholds. Equation �13� has been obtained in the quaside-
terministic approximation and therefore is valid when the
number of particles N is large and the thresholds are small,
as discussed after Eq. �10�. We have verified that it gives
good estimations inside its regime of validity. In particular,
for zero thresholds Eq. �13� is better than the formula ob-
tained in Ref. �7� thanks to the introduction of the character-
istic time �ton. �The formula in Ref. �7� is recovered for
uon=uoff=0 and �ton=0.�

Figures 1–3 compare the predictions of the quasideter-
ministic approximation, Eq. �13�, with the numerical results
for the threshold control protocol applied with the potential
�8� and V0=5kBT. For this potential the fit to the Fokker-
Planck evolution gives Con=0.67kBT /L, �on=0.058L2 /D,
�on=28D /L2, Coff=−0.74kBT /L, �off=0.037L2 /D, �off
=39D /L2, and �xon=0.08L, �ton=0.05L2 /D.

In Fig. 1 we plot the current as a function of the threshold
uon �with uoff=−uon� comparing the quasideterministic ap-
proximation �13� and the numerical results obtained from the
Langevin evolution equations �1�. We see that the quaside-
terministic approximation gives a good estimation of the cur-
rent. However, it fails to predict the minimum located at low
threshold values. This minimum is caused by a secondary
effect that has not been accounted in the deduction of the
analytic formula. This secondary effect is due to the fact that
nonzero thresholds have the disadvantage of not being in-
stantly optimal, because they imply switching on the poten-
tial when the force is still negative and switching off the
potential when the force is still positive. In addition, for very

FIG. 1. Average of the center-of-mass velocity �ẋc.m.�st as a
function of the threshold uon for numbers of particles N=105, 106

and the limit N→� for the potential �8� with V0=5kBT. Analytical
quasideterministic approximation �13� �lines� and numerical results
from Langevin equations �1� �points with error bars�. We have taken
uoff=−uon. �Units, L=1, D=1, kBT=1.�
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small thresholds the switchings are not induced much earlier
than they would be with zero thresholds due to the force
fluctuations. Thus, there is a minimum located at thresholds
of order 1 /�N, the magnitude of the force fluctuations. For
larger threshold this secondary effect of the thresholds is
overcompensated by the main effect of avoiding the unde-
sired trapping of the dynamics. This main effect allows to
have similar average displacements of the particles in a
shorter on-off cycle time. Therefore, larger thresholds in-
crease the average center-of-mass velocity.

Figures 2 and 3 compare analytic and numerical results
for the current as a function of the number of particles for

fixed nonzero thresholds: Fig. 2 for uon=−uoff=0.1kBT /L and
Fig. 3 for uon=0.6kBT /L and uoff=−0.4kBT /L �which are the
optimal values for an infinite number of particles�. In Fig. 2
we see that the quasideterministic approximation gives a
good estimation for large number of particles. In Fig. 3 the
estimate is more rough due to the fact that the thresholds do
not strictly verify the validity condition of the quasidetermin-
istic approximation ��u
�+�� �C
��. Another interesting re-
sult we have found is that for fixed nonzero thresholds the
average velocity as a function of N tends to a constant
asymptotic value for large number of particles, as Eq. �13�
predicts. For an infinite number of particles the force fluc-
tuation vanishes, thus, this asymptotic value is given by Eq.
�13� evaluated at �=0. See Figs. 2 and 3.

The optimal threshold protocol gives the same current or
better than the optimal periodic control �8� �Fig. 3�. In par-
ticular, for an infinite number of particles the force fluctua-
tions become negligible and the threshold control becomes
equivalent to a periodic switching. The relation between the
thresholds and the periods �8�

u
 = f

��T
� �14�

is obtained here as the limit N→�, i.e., �=0, of Eq. �9�.
This relation permits to get the optimal thresholds for an
infinite number of particles from the optimal periods just
using the functions fon

� �t� and foff
� �t� obtained numerically

from the Fokker-Planck equation. This avoids the need of
integrating numerically N coupled Langevin equations for
large values of N. We have numerically checked that the
expression �14� gives the optimal thresholds �see Sec. III B
and Fig. 7�.

2. Few particles: pure stochastic approximation

When we have few particles the situation is the opposite
to that considered in the preceding section and the net force
has nearly a pure stochastic behavior. A binomial distribution
is found for the net force probability distribution, p�f�, in
Ref. �7� under the approximations that the position of the
particles are statistically independent and that the probability
of finding a particle in the interval �0, aL� is a. For simplicity
this binomial distribution for the net force can be approxi-
mated by a Gaussian distribution

p�f� 

1

�2��2
e−f2/�2�2�, �15�

with � the amplitude of the fluctuations of the net force, that
is given by Eq. �7�. Neglecting the time correlations in the
net force, the average center-of-mass velocity for the thresh-
old protocol �Eq. �4�� is given by

�ẋc.m.�st =
1

�
�

uon

�

fp�f�df +
1

�
�

uoff

uon

fp+�f�df , �16�

with p+�f� the probability of having a net force f and a non-

negative value of ḟexp �p+�f�� p�f� /2�. This implies that, in
the validity range of this small N approximation ��
�maxt�f��t���, the current is a decreasing function of the
threshold uon, as can be easily proven comparing the results

FIG. 2. Average of the center-of-mass velocity �ẋc.m.�st as a
function of the number of particles N for the potential �8� with V0

=5kBT and for thresholds uon=0.1 and uoff=−0.1. The simulations
results obtained solving numerically the Langevin equations �1�
�points with error bars� are compared with the quasideterministic
approximation for large N �Eq. �13�� and the pure stochastic ap-
proximation for small N �Eq. �19��. The dotted horizontal straight
line corresponds to the periodic switching protocol with optimal
periods. �Units, L=1, D=1, kBT=1.�

FIG. 3. Average of the center-of-mass velocity �ẋc.m.�st as a
function of the number of particles N for the potential �8� with V0

=5kBT and for thresholds uon=0.6 and uoff=−0.4 �optimal values
for N→��. The simulations results obtained solving numerically
the Langevin equations �1� �points with error bars� are compared
with the quasideterministic approximation for large N �Eq. �13��
and the pure stochastic approximation for small N �Eq. �19��. The
dotted horizontal straight line corresponds to the periodic switching
protocol with optimal periods. �Units, L=1, D=1, kBT=1.�
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for uon� and uon with 0	uon� 
uon. Equation �16� gives

�ẋc.m.�st�uon� � − �ẋc.m.�st�uon� =
1

�
�

uon�

uon

fp−�f�df , �17�

with p−�f�� p�f�− p+�f��0. Thus, the last term in the previ-
ous expression is non-negative implying

�ẋc.m.�st�uon� � − �ẋc.m.�st�uon� � 0. �18�

Analogously, it can be shown that for 0�uoff� �uoff we have

�ẋc.m.�st�uoff� �− �ẋc.m.�st�uoff�= �1/���uoff

uoff� �−f�p+�f�df �0. This
shows that the average center-of-mass velocity is a decreas-
ing function for increasing modulus of the thresholds. There-
fore, for small N we get the maximum current for zero
thresholds.

For small thresholds we have found an approximate ex-
plicit analytical expression for the current. If uoff
−uon the
contribution of the second integral in Eq. �16� is generally
small, because it is the integration of a nearly odd function in
a nearly symmetric interval around zero. On the other hand,
the contribution of the first integral is greater provided the
thresholds are small �uon���. Then, neglecting the second
integral we obtain

�ẋc.m.�st 

�

��2�
e−uon

2 /�2�2�. �19�

�Note that for uon=0 we recover the zero threshold result
found in Ref. �7�.� This expression, Eq. �19�, gives good
predictions when we have few particles and small thresholds.
In particular, we show in Figs. 2–4 that it correctly predicts
the threshold and particle number dependence of the current,
even for uon��
3.4 when N=10 �Fig. 4�.

B. General thresholds

In the preceding section we have studied the threshold
protocol when the moduli of the thresholds are small, obtain-

ing approximate analytical expressions for the current. In
contrast, in this section we study the threshold protocol for
general thresholds �that are in general beyond the applicabil-
ity range of the previous analytical expressions�. This study
is done performing numerical simulations of the Langevin
equation of the threshold protocol for general values of the
thresholds.

1. uoff=−uon

Let us discuss first the results for thresholds that are re-
lated by uoff=−uon.

In the few particle case, when the thresholds are small the
current decreases exponentially with the square of the thresh-
old as we have already seen �see Eq. �19��. However, as the
rate of the exponential is small, we nearly have a plateau
near the maximum at zero thresholds, as shown in Figs. 4
and 5. On the other hand, for very large thresholds Eq. �19�
is no longer valid and the current decreases faster than the
exponential. Note that the current continues to be a decreas-
ing function, as predicted by Eq. �18� �valid for any thresh-
old values in the few particle case�. See Figs. 4 and 5.

In contrast, in the many particle case the maximum of the
current is no longer at zero thresholds, but at a finite value.
As we have explained before, the introduction of thresholds
has the advantage of inducing earlier switchings. This avoids
the undesired trapping that otherwise is present for large N
implying low current values. The presence of thresholds al-
lows to have similar average displacements of the particles in
a shorter on-off cycle time, and therefore increases the aver-
age center-of-mass velocity. However, if the thresholds are
too large the losses in the displacement become more impor-
tant than the gains of shortening the on-off cycle time. There-
fore, the current has a maximum located at a finite value of
the thresholds in the many particle case �Fig. 5�. �The tiny
minimum in the small threshold region is related to another
effect: the disadvantages of choosing a not instantly optimal
protocol. For a more detailed explanation see Sec. III A 1.�
Another important result in the many particle case is that the
maximum obtained for the current as a function of the

FIG. 4. Average of the center-of-mass velocity �ẋc.m.�st as a
function of the threshold uon for N=2, 5, and 10 particles for the
potential �8� with V0=5kBT. Analytical pure stochastic approxima-
tion �19� �lines� and numerical results from Langevin equations �1�
�points with error bars� are compared. We have taken uoff=−uon.
�Units, L=1, D=1, kBT=1.�

FIG. 5. Average of the center-of-mass velocity �ẋc.m.�st as a
function of the threshold uon with uoff=−uon for various N. The lines
correspond to the numerical solution of the Langevin equations �1�
for the potential �8� with V0=5kBT. �Units, L=1, D=1, kBT=1.�
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threshold magnitude is quite flat and nearly independent of
the number of particles. See Fig. 5.

In summary, in the many particle case the current has a
maximum for nonzero thresholds whose position is nearly
independent of the number of particles. On the other hand,
for few particles the current is maximum for zero thresholds.
However, in the few particle case the current is nearly the
same up to thresholds of the order of the thresholds that give
the maximum for the many particle case �see Figs. 4 and 5�.
This has an important implication: the optimal threshold val-
ues for the many particle case give currents close to the
maximum for any number of particles.

2. uoffÅ−uon

The study of the current for completely general thresholds
uon and uoff �without restrictions� reveals that the behavior is
analogous to that described previously. In fact, the optimal
thresholds for large number of particles are located not far
from the line uon=−uoff, and these thresholds give currents
close to the maximum for any number of particles. �See Figs.
6 and 7.�

As we have already commented in the preceding section,
for an infinite number of particles the force fluctuations be-
comes negligible and the threshold protocol becomes equiva-
lent to a periodic switching. This implies the relation �14�
between the optimal periods Ton and Toff, and the optimal
thresholds uon and uoff, that we have numerically checked
�see Fig. 7�. Therefore, these relations permit to obtain the
optimal thresholds for an infinite number of particles from
the optimal periods, just using the functions fon

� �t� and foff
� �t�

obtained numerically from the Fokker-Planck equation.
These thresholds give good results for large number of par-
ticles. Moreover, it is important to note that these threshold
values also give currents close to the maximum in the few
particles case due to the smooth dependence for small thresh-
olds �see Figs. 5–7�.

In particular, we have seen that for the potential �8� with
V0=5kBT the optimal switching periods are approximately
Ton=0.06L2 /D and Toff=0.05L2 /D. Therefore, with just a
Fokker-Planck simulation for the potential we have found
that a good estimation of the optimal thresholds is given by

uon= fon
� �Ton�=0.6kBT /L and uoff= foff

� �Toff�=−0.4kBT /L, in
good agreement with Fig. 7.

IV. CONCLUSIONS

In this paper we have analyzed the threshold control pro-
tocol for a collective flashing ratchet. We have studied the
threshold dependence of the current in this closed-loop con-
trol protocol. The quasideterministic �for many particles� ap-
proximation �7� has been improved through the introduction
of an additional characteristic time giving better results for
not-so-many particles. Both the quasideterministic and the
stochastic �for few particles� approximations �7� have been
applied to the threshold control protocol. This has led to
analytical expressions for large and small number of par-
ticles. We have computed numerically the current depen-
dence on the thresholds and on the number of particles ob-
taining a good agreement between analytical and numerical
results in the validity range of our assumptions. We have also
compared these results with the optimal periodic switching
protocol.

We have seen that for many particles the current has a
maximum for nonzero thresholds whose position is nearly
independent of the number of particles. On the other hand,
for few particles we have demonstrated that the current in-
creases as thresholds moduli decrease, so the maximum cur-
rent is reached at zero thresholds. However, the current is
nearly the same up to thresholds of the order of the optimal
thresholds for the many particle case. This implies that the
optimal thresholds values for the many particle case give
currents close to the maximum for any number of particles.
The optimal thresholds for an infinite number of particles can
be obtained from the optimal periods of the periodic protocol
just solving the Fokker-Planck equation in two particular
cases �potential on and off, see Sec. III A�. Therefore, we can
get a good estimation of the optimal thresholds for many

FIG. 6. Thresholds dependence of the average of the center-of-
mass velocity �ẋc.m.�st for N=104 particles in the potential �8� with
V0=5kBT. The grid has been obtained integrating numerically
Langevin equations �1� for different thresholds uon and uoff. �Units,
L=1, D=1, kBT=1.�
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FIG. 7. Thresholds contour lines corresponding to the value of
the average of the center-of-mass velocity �ẋc.m.�st 5% below its
maximum for N=102, N=103, and N=104 particles in the potential
�8� with V0=5kBT. The contour line for N=105 is already very
similar to that for N=104. The point corresponds to the optimal
thresholds for N→� obtained from the optimal periods using Eq.
�14�. �Units, L=1, D=1, kBT=1.�
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particles, that also gives currents close to the optimal for any
number of particles as we have shown.

The closed-loop threshold control gives the same current
as the optimal protocols for the one particle case and for an
infinite number of particles, and it gives high currents in
between. However, obtaining the best protocol for the maxi-
mization of the current is still an open question.

In this work, and in previous ones �7,8�, we have seen
that, thanks to the information about the fluctuations ob-
tained through the feedback, the performance of the system
can be increased. This increase of the performance has ther-
modynamical limitations that have been studied in a general
context for the efficiency �10�. We are now working in order

to get a deeper understanding of this interplay between the
information and the increase of the performance.
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